SIMULTANEOUS EQUILIBRIUM

Section - 7

When two salts having a common ion (either cation or anion) are together in water, then their respective solubilities are not independent of each other.

Illustrating the concept:

Consider a solution containing two salts: $CaF_2(K_{sp} = 3.4 \times 10^{-11})$ and $SrF_2(K_{sp} = 2.9 \times 10^{-9})$. Compare their K_{sp} values. Let us assume that most of F^- ion concentration in the saturated solution is from SrF_2 , as its K_{sp} is much higher than that of CaF_2 . It means that first SrF_2 will establish its equilibrium (as if there is no CaF_2), then CaF_2 will dissolve in presence of ions furnished only by SrF_2 .

Let the solubility of SrF_2 be x mol/L.

$$\operatorname{SrF}_{2}(s) \iff \operatorname{Sr}^{2+}(\operatorname{aq}) + 2\operatorname{F}^{-}(\operatorname{aq})$$

$$\Rightarrow [\operatorname{Sr}^{2+}] = x \text{ and } [\operatorname{F}^{-}] = 2x$$

$$\Rightarrow x = \left(\frac{\operatorname{K}_{\operatorname{sp}}}{4}\right)^{1/3} = 9 \times 10^{-4}$$

Now the solubility of CaF₂ is determined in presence of 9×10^{-4} M F⁻ ions. It means neglect the contribution of F⁻ ions from CaF₂.

 $K_{sp} = [Ca^{2+}][F^{-}]^{2}$ \Rightarrow $[Ca^{2+}] = \frac{K_{sp}}{[F^{-}]^{2}} = \frac{3.4 \times 10^{-11}}{(2 \times 9 \times 10^{-4})^{2}} = 1.0 \times 10^{-5} \text{ M}$

Hence the solubility of CaF_2 is 1.0×10^{-5} mol/L.

Note: Let us check our assumption. F⁻ ions from CaF₂ is twice the amount of Ca²⁺ ions i.e., 2.0×10^{-5} M, whereas, F⁻ ions from SrF₂ is $2 \times 9.0 \times 10^{-4}$ i.e. 1.8×10^{-3} M, which is much higher than 2.0×10^{-5} M.

Illustration - 23 Calculate the simultaneous solubilities of AgSCN and AgBr.

$$K_{sp} \; (AgSCN) = 1.0 \; \times 10^{-12} \; \; ; \quad \; K_{sp} \; (AgBr) = 5.0 \; \times 10^{-13}$$

SOLUTION:

In this case, please note that the K_{sp} values of two salts are very similar. So the concentration of Ag^+ ions (the common ion) can not be calculated from a single salt alone and we have to consider the equilibrium of the two salts simultaneously.

Let the simultaneous solubilities of AgSCN and AgBr be *x* and *y* respectively in mol/L.

$$\begin{array}{ccc} AgSCN(s) & & \longrightarrow & Ag^{+}(aq) + SCN^{-}(aq) \\ & & x & & x \\ \\ AgBr(s) & & \longrightarrow & Ag^{+}(aq) + Br^{-}(aq) \end{array}$$

At equilibrium:

$$[Ag^+] = x + y;$$
 $[SCN^-] = x;$ $[Br^-] = y$
 $[Ag^+] [Br^-] = K_{SD,Ag,Br}$

and
$$[Ag^+][SCN^-] = K_{sp AgSCN}$$

Note that : $[Ag^+] = [Br^-] + [SCN^-]$

[This is an Electrical charge neutrality equation]

$$[Ag^{+}] = \frac{K_{\text{sp AgBr}}}{[Ag^{+}]} + \frac{K_{\text{sp AgSCN}}}{[Ag^{+}]}$$

$$\Rightarrow \qquad [Ag^{+}] = \sqrt{K_{\text{sp AgBr}} + K_{\text{sp AgSCN}}}$$

$$= x + y = 1.22 \times 10^{-6} \qquad \dots \text{(i)}$$
Also,
$$\frac{[Br^{-}]}{[SCN^{-}]} = \frac{y}{x} = \frac{K_{\text{sp AgBr}}}{K_{\text{sp AgSCN}}} = 0.5 \qquad \dots \text{(ii)}$$

Using (i) and (ii), we get:

$$x = 8.0 \times 10^{-7}$$
; $v = 4.0 \times 10^{-7}$

Ionic Equilibrium Vidyamandir Classes

Illustration - 24 Two weak monobasic organic acids HA and HB have dissociation constants as 3.0×10^{-5} and 1.5×10^{-5} respectively at 25°C. If 500 ml of 1 M solutions of each of these two acids are mixed to produce 1 litre of mixed acid solution, what is the pH of the resulting solution?

SOLUTION:

Note that K_a of two acids is nearly same. In such cases, we have to consider H⁺ from both HA and HB simultaneously. The concentration of HA and HB in the mixture = 0.5 M [equal volumes are mixed] = c M

Now,
$$[H^+]_{final} = [H^+]_{from HA} + [H^+]_{from HB}$$

$$\Rightarrow K_{aHA} = \frac{(x+y)x}{c-x} \text{ and } K_{aHB} = \frac{(x+y)y}{c-y}$$

As K_a of both acid ~ 10^{-5} and H⁺ from one acid acts as common ion for other's dissociation, x and y are very less as compared to c.

$$\Rightarrow c - x \approx c \text{ and } c - y \approx c$$

$$\Rightarrow K_{a(HA)} \approx \frac{(x+y)x}{c} \text{ and } K_{a(HB)} \approx \frac{(x+y)y}{c}$$

Divide the two expressions to get:

$$\frac{2}{1} = \frac{x}{y} \qquad \Rightarrow \qquad x = 2y$$

Substitute for
$$y = \frac{1}{2}x$$
 in $K_{a(HA)} = \frac{x^2 + xy}{c}$

$$\Rightarrow 3.0 \times 10^{-5} = \frac{x^2 + 0.5x^2}{0.5} \Rightarrow x = \sqrt{10} \times 10^{-3} \,\mathrm{M}$$

and
$$y = \frac{\sqrt{10}}{2} \times 10^{-3} \text{ M}$$

[H⁺] =
$$x + y = \frac{3\sqrt{10}}{2} \times 10^{-3} \,\mathrm{M}$$

$$pH = -\log_{10} \left(\frac{3\sqrt{10}}{2} \times 10^{-3} \right) \Rightarrow pH = 2.32$$

Illustration - 25 Determine the solubility of AgCN in a buffer solution maintained at pH = 3.

$$K_{sp}\left(AgCN\right)=2.0\times10^{-16}$$
 ; $K_{a}(HCN)=6.0\times10^{-10}$

SOLUTION:

AgCN is a sparingly soluble salt in aqueous medium.

$$AgCN(s) \rightleftharpoons Ag^{+}(aq) + CN^{-}(aq)$$

Let the solubility of AgCN be x M. Thus, $[Ag^+] = x$ M and $[CN^-] = x$ M from salt but it will not be equal to x finally.

The CN⁻ions will react with H⁺ in the solution to form HCN (a weakly dissociated acid) and we have to assume that in solution, $[CN^-] = y$ M finally which will be decided by the dissociation of HCN as explained

We have two equations now:

$$K_{sp(AgCN)} = [Ag^+][CN^-] = xy = 2 \times 10^{-16}$$

and
$$K_{a(HCN)} = \frac{[H^+][CN^-]}{HCN} = \frac{10^{-3} y}{x - y} = 6 \times 10^{-10}$$

Solve the equations to get:

$$x = [Ag^+] = \sqrt{\frac{K_{sp}}{K_a} ([H^+] + K_a)} = 1.82 \times 10^{-5} M$$

Note that in the solution:

$$[Ag^+] = [CN^-] + [HCN]$$

(Electrical charge neutrality equation)

Vote: In this example, since the dissociation constant of acid is very low and pH of the solution is fairly high, we could have assumed that $x - y \approx x$. You can check the same by comparing $[H^+]$ and K_a in the expression for x.

Illustration - 26 How much AgBr could dissolve in 1.0 L of 0.4 M NH₃? Assume that $Ag(NH_3)_2^+$ is the only complex formed. Given: The dissociation constant for $Ag(NH_3)_2^+ \Longrightarrow Ag^+ + 2NH_3$; $K_d = 6.0 \times 10^{-8}$ and $K_{sp}(AgBr) = 5.0 \times 10^{-13}$.

SOLUTION:

Let solubility of AgBr be x M. Thus, $[Br^-] = x$ M but $[Ag^+] \neq x$ M since it will react with NH₃ to form a complex and thus, its concentration will be decided by the dissociation of the complex. So, let $[Ag^+] = y$ M.

$$AgBr(s) \rightleftharpoons Ag^{+}(aq) + Br^{-}(aq)$$

$$\Rightarrow$$
 $K_{sp} = [Ag^+][Br^-] = yx = 5.0 \times 10^{-13}$

Since the formation constant (K_f) of the complex is very high, assume that whole of Ag^+ formed is consumed.

$$Ag^{+} + 2NH_{3} \longrightarrow Ag(NH_{3})_{2}^{+}$$

$$x \qquad 0.4$$

$$0.4 - 2x \qquad x$$

$$Ag(NH_3)_2^+ \longrightarrow Ag^+ + 2NH_3$$
; $K_d = 6.0 \times 10^{-8}$
 x
 $x - y$
 y
 $0.4 - 2x$
 y
 $0.4 - 2x + 2y$ (~ 0.4)

$$K_{d} = \frac{[Ag^{+}][NH_{3}]^{2}}{[Ag(NH_{3})_{2}^{+}]} = \frac{y(0.4 - 2x + 2y)^{2}}{x - y} = 6 \times 10^{-8}$$

Assuming $x - y \approx x$ since K_d is low and $x \ll 0.4$, we get:

$$K_{d} = \frac{y(0.4)^2}{x}$$

Solving for $x : x = 1.15 \times 10^{-3} \text{ M}$ (Verify the approximation yourself).

Illustration - 27 HN_3 (hydroazoic acid) is a weak acid dissociating as: $HN_3 \rightleftharpoons H^+ + N_3^-$. Find the concentration of Ag^+ ions, if excess of solid AgN_3 is added to a solution maintained at pH = 4. The ionisation constant K_a of HN_3 is 2.0×10^{-5} . The solubility of AgN_3 in pure water is found to be 5.4×10^{-3} M at 25° C.

SOLUTION:

AgN₃ is a sparingly soluble salt, dissociating in water

as:
$$AgN_3 \rightleftharpoons Ag^+ + N_3^-$$
$$K_{sn} = [Ag^+][N_3^-]$$

Since solubility of AgN₃ in water is 5.4×10^{-3} , $K_{sn} = (5.4 \times 10^{-3})^2 = 2.92 \times 10^{-5}$

Now we have to find the solubility of AgN_3 in solution having pH = 4.

Let solubility of AgN_3 be x M at pH = 4.

$$\Rightarrow \qquad [Ag^+] = x \text{ M, but } [N_3^-] \neq x \text{ M}$$

$$([N_3^-] \text{ will be decided by dissociation of } HN_3).$$

Let
$$[N_3^-] = y M$$

First, assume that whole of $N_3^-(x M)$ formed from AgN_3 reacts with H⁺ ions to form HN_3 .

$$\Rightarrow$$
 [HN₃] = x M

Now HN₃ dissociates as follows:

$$HN_3 \iff H^+ N_3$$

 $x 10^{-4} - x$
 $x 10^{-4} + y \approx 10^{-4} y$

[As pH is maintained at 4 hence $[H^+] = 10^{-4}M$]

Now we have a simultaneous equilibrium in aqueous solution involving dissociation of AgN₃ and HN₃.

$$K_{sp}$$
 of $AgN_3 = [Ag^+][N_3^-] = xy$...(i)

$$K_a \text{ of } HN_3 = \frac{[H^+][N_3^-]}{[HN_3]} = \frac{[H^+]y}{(x-y)} \dots \text{ (ii)}$$

Solving (i) and (ii) simultaneously, we have:

$$x = [Ag^{+}] = \sqrt{\frac{K_{sp}}{K_{a}} ([H^{+}] + K_{a})}$$

Substitute the values of K_{sp} , K_a and $[H^+]$ to get x = 0.0132 mol/L

Note: In this example, since the dissociation constant of acid is quite high and pH of the solution is quite low, we can not assumed that $x - y \approx x$. You can check the same by comparing [H⁺] and K_a in the expression for x.

45